Mike Piff
04/18/21
Abstract

In this article the author explains how to do some
standard and not so standard word processor text merges in
TEX documents, using no other tools than TEX itsalf. A
common application is to the mail merge or form letter,
where names and addresses are stored in afile, together with
other bits of information, and a standard letter with variable
fields embedded in it is customized for every name from this
file. Another application is to the pretty-printing of the
contents of a database.

The macros described in textnerg.sty work
equally in both plain TEX and LATEX.

1 Introduction

It is often said that although LATEX is good at typesetting mathematics, it is wholly
unsuitable for common word processor functions such as mail merges. The latter are
easy to achieve in most ordinary word processors, but in its raw state LATEX is
incapable of doing a mail merge, or, indeed, of generating the same block of text over
and over again but with different parameters in each block, those parameters having
been read from a subsidiary merge file. The latter file might possibly be the output
from a database or any other program.

This article aims to show the reader that such a repetitive task need not be as
difficult asit at first appears. In TEX, it is possible to hide many details of a facility
inside a subsidiary style file, so that the user is unaware of what fearful processes are
going on in the background. It is then possible to present the end-user with an
extremely simple interface, perhaps simpler and more powerful than is available in
other systems.

In earlier articles [Bell\s\do5(T)B8\s\do5(5)4, Garavelli\s\do5(T)B8\s\do5(5)3,
Lee\s\do5(T)B7\s\do5(1)87, McKinstry\s\do5(T)B8\s\do5(6)0] it was shown how a
standard letter could be customized by adding names and addresses from a separate
file. I am to show that it is possible to achieve far more than this with a fairly
compact but general set of macros.

2 A simple example

Suppose that we have alist of student names and examination grades, one per student,
and that we wish to send a letter to each student giving his’/her exam grade. We must
decide first what bits of information must be prepared in our subsidiary file, by
looking at an example letter and finding out which items change from letter to | etter.

Suppose that one instance of our letter isthe following, aLATEX example.

\ beginl etterM Abraham L Spriggs\\
34 W nchester Road\\
Sheffield S99 5BX\\
Engl and
\ openi ngDear M Spri ggs,
This letter is to informyou
that you obtained grade Cin
your recent exam nations.
\cl osi ngYours faithfully,

\endl etter

We can see that we need to know the studentjs title, forename(s), surname, address
and grade to compose such a letter.

One of the simplest ways of achieving this effect is to prepare a file with lines of
theform

\ M/LetterM...C

for each student and then simply \i nput it into a LATEX file in which \
MyLetter has been defined as having five parameters. A problem with this
approach is that we may not be able to coax the student database into producing such a
file. Another problem is that we need something more subtle if there are fifty
parameters. For example, we might want to print out the contents of the student
database with one page per student, but it could be that there are fifty information
fields per student. Even worse, the number of pieces of information per student might
not be a constant number, because, say, we are printing out fields from arelated filein
which marks on individual examination papers are held.

We shall tackle our simple example in a way that lends itself to more generality
later on, and in aform that most database programs should be capable of handling.

We thus prepare asubsidiary filer esul t s. dat with records of fivefieldsinit.
Each student is represented by five lines of thisfile,

M

Abr aham L

Spriggs

34 Wnchester Road\\...\\England
C

and the student records appear one after another in this file. Thus both the field and
record separators are carriage returns.

TEX itself needs to know three bits of information:
1. thename of the subsidiary file,

2. thefieldsto read, and
3. thetemplate of the letter.
We passit thisinformation in the following form

\ Fi el ds\ Ti t | e\ For enanes\ Sur nane
\ Addr ess\ Gr ade
\ Mergeresul ts. dat %
\beginletter\Titl e\ \Forenanes\
\ Sur nanme\ \ \ Addr ess
\ openi ngDear \Title\ \Surnang,
This letter is to informyou
that you obtained grade \Grade\ in
your recent exam nations.
\closingYours faithfully,
\endl etter

LATEX should open the subsidiary file and, for each set of five parameters, generate
aletter inthe dvi file. When it reaches the end of the merge file, LATEX should
terminate execution of the\ Mer ge command and presumably finish the document.

3 A few complications

Looking at the above example in a bit more generality, we see that we are reading
records of n fields from the merge file and placing them into a TEX document in
such away that they replace n preassigned control sequences. However, it may happen
that the merge file is prepared by humans, who might possibly have inserted some
extra blank lines into the file. Again, it could be that certain sorts of fields might be
blank, whereas others can never be blank. Perhaps it would be better to build in some
degree of error recovery.

We shall make the assumption that the first field in any record is definitely a non-
blank one and that we know beforehand whether each of the others might conceivably
be blank. We make a modification to our \ Fi el ds statement. It can contain not
only the field name control sequences but also the tokens+ and - , with the following
interpretation. A + indicates that al following fields should be re-read until a non-
blank result is obtained. A - indicates that any following fields could conceivably be
blank, subject to the restriction that the very first field is always non-blank.

Thus the command

\Fi el ds\a+\b\c-\d

would indicate that only \ d is alowed to be blank, because the + token has no
effect. In

\Fields-\a\b+-\c+\d

theinitial - token enables blank reading of datatokens, but the very first datatokenis
not permitted to be blank anyway. Thus\ a isread asanon-blank tokenand\ b asa
possibly blank token. The sequence +- now switches non-blank reading on and off
again, so\ ¢ isread as possibly blank. Finally \ d isnon-blank.
Another complication we allow isthat the\ Fi el ds command can appear
several timesin our file. The interpretation is that the last occurrence of \
Fi el ds before we encounter the\ Mer ge command will indicate the fieldsto
be read for every record. Any occurrencesof \ Fi el ds within the merged text
indicate anew list of fieldsto be read when that command is encountered. This
| iesassameditietandgtiotst pidcessing, such as

\ifx\Title\Ms
\ Fi el ds\ Mai denNane
\fi

and also gives us some flexibility about the field order later on.

It should also be stressed that the undefined control sequences appearing in the
template need not correspond exactly to the fields in the subsidiary file. An example
might be that the subsidiary file contains the text

Spriggs, M AbrahamL

and onefield read is\ Ful | Name. TEX would then have to pre-process this name to
generate its several components as used in the template. The command \
Pr ePr ocess could beincluded at the start of the template.

\ def \ parse#1, #2 #3\endparse%
\ def\ Sur name#1\ def \ Ti t | e#2%
\ def \ For enanmes#3

\ def \ PrePr ocess\ expandafter
\ par se\ Ful | Nane\ endpar se

An aternative and simpler looking approach to reading fields from a file\ fi |
might be to define each such field as follows.

\def\Fi el d#1\ def #1\read\fil to#1#1l
\ Fi el d\ Nane \Fi el d\ Address \ Fi el d\ Mar k

The first time \ Nane is encountered, it reads its own expansion from \ fil and
then expandsitself. Henceforth, it has acquired its new expansion. The disadvantageis
that \ Name must appear in the text before any subsidiary field such as\ Sur nane
can be used.

Finally we should consider the possibility that the second parameter of \ Mer ge
might be too large to fit into memory. We can clearly handle this problem by allowing
the second parameter merely to consist of thetext \ i nput t enpl at e, so that the
root file handles two subsidiary files, one containing the template and the other
containing the fields.

4 Implementation of the simple case

For convenience we define a frequently used combination here.

\def\gl et\global\let

The subsidiary merge file is defined next. A macro is then defined that attempts to
open it for reading. If that is unsuccessful, the file is closed and an error message is
issued.

\ newr ead\ MergeFi | e

\def\ I nput Fi | e#1%
\ openi n\ Mer geFi | e=#1
\ifeof\ MergeFil e
\errmessageEnpty nerge file%
\cl osei n\MergeFil e
\ I ong\ def \ MakeTenpl at e##1%

\ def \ Tenpl at e%

\else\Getlnput\fi

The command \ MakeTenpl at e will be used later to generate the body of the form
into which fields are inserted. We redefine it if the file is empty so that it produces no
text.

Because the conditional \ i f eof does not return true until after an unsuccessful
read operation, a mechanism of looking ahead is used which is similar to that found in
Pascal.

\ def\ Get I nput\endlinechar=-1
\ gl obal \ read\ MergeFi |l e to\Il nput Buf fer

We set up a mechanism for deciding whether or not we have exhausted the merge
file. It forces\ i f eof toreturntrue by skipping over blank lines.

\ def \ Seel f Eof %
\ | et\ Next Look\ r el ax
\ifeof \MergeFil e
\el se
\i fx\InputBuffer\enpty
\ LookAgai n
\fi

\fi

\ Next Look

\ def\ LookAgai n\ Get | nput

\ | et \ Next Look\ Seel f Eof

We can now prepare to read actual fields from the merge file. A conditional is
used to indicate whether or not the field we are about to read is alowed to be blank.
We also set up a mechanism for changing its value.

\newi f\ifNonBl ank \ NonBl ankf al se
\ def\ Al | owBIl ank\ gl obal \ NonBI ankf al se
\ def \ Dont Al | owBI ank\ gl obal \ NonBl ankt r ue

Fields are actually read by means of the following command. Its only parameter is
the name of the control sequence into which thefield isread.

\ def \ Readl n#1%
\'i f NonBl ank\ Seel f Eof\ fi
\ifeof\ MergeFile
\ gdef #1??\ M ssi ngFi el d
\el se
\ gl et #1\ | nput Buf f er
\ Get | nput
\fi
\ def\ M ssi ngFi el d%
\nessageM ssing field in file

The \ Fi el ds command places its parameter into a token register called \
A obal Fi el ds. Thiscommand will be redefined by the\ Mer ge command.

\ newt oks\ @ obal Fi el ds
\ def\ Fi el ds#1\ d obal Fi el ds#1

When afield token list is read, each individual token within it must be either read
asafield or interpreted as a blank/nonblank switch. The next token is then read by tail
recursion. It is assumed that the final token in the list is\ EndPar seFi el ds. This
must be defined to expand to something unlikely to be read as a value of one of the
fields,and sowe\ | et itto\ Par seFi el ds.

\ def \ Par seFi el ds#1%
\'i f x#1\ EndPar seFi el ds
\'| et \ Next Par se\r el ax
\el se
| et \ Next Par se\ Par seFi el ds
i f x#1+\ Dont Al | owBl ank
el se
\i fx#1-\ Al | owBl ank
\ el se\ Readl n#1
\fi
\fi
\ fi\ Next Parse
\'| et \ EndPar seFi el ds\ Par seFi el ds

\
\
\

We apply this command to our token register after expanding it.
\ def \ ReadFi el ds#1\ expandaft er\ Par seFi el ds

\ t he#1\ EndPar seFi el ds
\ Al | owBl ank

At long last we are ready to define the \ Mer ge command itself. The first
parameter is the filename of the subsidiary file and the second is the template or form
into which fields are inserted. Since a\ Fi el ds command within the\ Mer ge text
is meant to act immediately on the token list that follows it, we redefine it to operate
in adifferent way.

\ I ong\ def \ Mer ge#1#2\ begi ngr oup%
\Input Fi | e#1%
\ def\ Fi el ds##1%
\ Par seFi el ds##1\ EndPar seFi el ds%
\ MakeTenpl at e#2\ I terate
\ I ong\ def \ MakeTenpl at e#1\ def \ Tenpl at e#1l

The grouping keeps any changes to the definition of \ MakeTenpl at e local to this
merge. Thus several consecutive merges can be handled within one document. The\
endgroup is supplied by the macro \ | t er at e when the merge file has been
exhausted.

\Iterate must read the fields which were declared before it was entered,
substitute them into its template and repeat itself using tail recursion if the end of the
merge file has not been encountered.

\count def\Iteratecounter=9
\'lteratecounter=0
\def\lterate%
\ gl obal \ advance\ It eratecounter byl
\ ReadFi el ds\ d obal Fi el ds
\ Tenpl at e
\ Seel f Eof
\ifeof\ MergeFil e
\def\ Nextlterati on%
\ endgr oup\ cl osei n\ Mer geFi | e%
\el se
\let\Nextlteration\lterate
\fi
\ Nextlteration

The point of the use of counter 9 in the above isthat it is accessible to the print driver
for page selection. Anyone who has started printing 150 letters, al with page
number 1, only to run out of paper half way, will appreciate the use of this artifice!

5 A complicated example

We will next look at an example in which the template contains a table of
indeterminate length, albeit fixed width. So far our macros work in either plain TEX
or in LATEX, but the way in which these two packages handle tables is slightly
different. However, the only difference that need concern usisthat LATEX uses\ \
whereplain TEX uses\ cr.

The example given here is in LATEX, but our style will work equally well in

plain TEX. In our student letter we wish to insert a table of course codes and marks.
Since each student did a different number of courses, we need some way of
recognizing the end of the course list in the merge file. The default will be to insert a

blank line at the end of such a sub-list. Thus, the following text appears before the
close of the letter template.

Here are your marks on individual papers.
\ begi ncent er
\ begi ntabul ar|Ir|[\hline
Code&Mar k\\\ hl i ne
\ Mul ti Read2\\\ hl i ne
\ endt abul ar
\ endcent er

The merge file now has the following structure.
Title

G ade

Code

Mar k

Code

Mar k

plank

Title

In other applications some of the fields in the table might possibly be blank. We
then let the user change the *blank* line marking the end of alist to some other string
of hisown choosing.

\ Mar KEnd* **

There might be multiple tables in the same template, with their data intermingled
in the merge file with main fields. The generalized \ Fi el ds command allows us to
order the merge file however we want. Thus we could have main fields, then a table,
followed by more main fields, and so on.

A final complication is that the fields appearing in a table are essentialy
anonymous. By this| mean that they are transferred into the table as they are, without
any pre-processing possible through appearing in the template as control sequences. I
we wish what appears in the table to be different from what appears in the file, a
mechanism is needed to tell TEX that a certain column has to be treated in a certain
way. The command

\ Processn\f oo

will replace every field *f* read into column n by \ f oo*f*. It is even possible to do
some numerical calculations by this method.

